Excavating a Buried Higgs

Jessie Shelton

Yale

arXiv:1006.1650

with A. Falkowski, D. Krohn, A. Thallapillil, and L.-T. Wang

FermiLab July 29, 2010

A light Higgs at the LHC

A light Standard Model Higgs is a challenging signal at the LHC:

SM BRs as a function of m_h $m_h < 135 \text{ GeV}: h \rightarrow b\bar{b}$

 QCD backgrounds for a dominant hadronic decay mode are immense.

Strategies for a light Higgs

- gg → h, qq → hqq: a hadronic h leads to difficult all-hadronic final states
- V + h, $t\bar{t} + h$: better, but backgrounds V + jets, $t\bar{t} +$ jets are still very large
- jet substructure: tools capable of digging a hadronic h out of the QCD radiation

A light SM-like Higgs is *narrow*

- Small matter Yukawas: $\Gamma_h(m_h = 120 \text{ GeV}) = 3.7 \text{ MeV}$
- New physics coupling to H can easily change branching fractions by O(1), with minimal changes to EWSB
- For example: $\Delta \mathcal{L} = \lambda_s |H|^2 s^2$
 - $\Gamma(h o ss)\sim m_h rac{\lambda_s^2}{\lambda_h^2}$; $\Gamma(h o bar b)\sim m_h y_b^2$
 - large range of parameter space: $BR(h \rightarrow ss) > BR(h \rightarrow b\bar{b})$
 - final state then depends on BR(s → X)'s
- Theoretically appealing: reduce tuning in Higgs potential, utilize portal to hidden sectors
- Relatively easy to achieve: should be prepared to cover parameter space at LHC

Buried Higgs

- A reference model explicitly realizing interesting scenarios for both LEP and LHC
- "Double protection": a SUSY little Higgs Bellazzini, Csáki, Falkowski, Weiler, '09
- H_d, H_u, a: PNGBs with loop-generated masses
- a is naturally light (few GeV) and couples to SM fermions through mixing with heavy vector-like partners of third-generation fermions
- Dominant decay a → gg
- Limits and discovery:
 - current limits from LEP: $m_h \gtrsim 86 \text{ GeV}$
 - what about the LHC?

Buried Higgs at LHC

- Search strategies for $h \rightarrow aa \rightarrow 4X$, 2X2Y depend critically on
 - *m*_a: separation of decay products
 - $BR(a \rightarrow 2X)$: especially to non-hadronic $(\gamma \gamma, \mu \mu, \tau \tau)$ or taggable $(bb, \tau \tau)$ final states
- h → aa discovery is easiest when:
 - isolated taggable decay products in final state (e.g., 4b)
 Cheung, Song, Yan, '07; Carena et al., '07
 - or BRs to rare clean decay modes are not too suppressed
 Dobrescu, Landsberg, Matchev, '00; Chang, Fox, Weiner, '06; Lisanti, Wacker '08
- Light a and suppressed BRs to non-hadronic final states put a buried Higgs out of reach with these approaches
- To take full advantage of LHC discovery potential we must develop discovery techniques for the dominant all-hadronic decay mode h → aa → 4g

- LHC is a busy hadronic environment with multiple hard scales: $\sqrt{s} \gg M \gg \Lambda_{QCD}$. Essential elements of boosted analyses include:
- ability to resolve events on multiple angular scales
- variables to discriminate between QCD shower and collimated hard decays
- algorithm to reduce contamination from unrelated soft radiation

- LHC is a busy hadronic environment with multiple hard scales:
 √s ≫ M ≫ Λ_{QCD}. Essential elements of boosted analyses include:
- ability to resolve events on multiple angular scales
 - · Sequential jet algorithms:

$$d_{ij} = \min(p_{Ti}^n, p_{Tj}^n) \frac{\Delta R_{ij}}{R_{cut}}$$

$$d_i = p_{Ti}^n$$

$$n = \begin{cases} 1 & k_T \\ 0 & C/A \\ -1 & anti-k_T \end{cases}$$

- LHC is a busy hadronic environment with multiple hard scales:
 √s ≫ M ≫ Λ_{QCD}. Essential elements of boosted analyses include:
- ability to resolve events on multiple angular scales
 - · Sequential jet algorithms:

$$d_{ij} = \min(p_{Ti}^{n}, p_{Tj}^{n}) \frac{\Delta R_{ij}}{R_{cut}}$$

$$d_{i} = p_{Ti}^{n}$$

$$n = \begin{cases} 1 & k_{T} \\ 0 & C/A \\ -1 & anti-k_{T} \end{cases}$$

- LHC is a busy hadronic environment with multiple hard scales: $\sqrt{s} \gg M \gg \Lambda_{QCD}$. Essential elements of boosted analyses include:
- ability to resolve events on multiple angular scales
 - · Sequential jet algorithms:

$$d_{ij} = \min(p_{Ti}^{n}, p_{Tj}^{n}) \frac{\Delta R_{ij}}{R_{cut}}$$

$$d_{i} = p_{Ti}^{n}$$

$$n = \begin{cases} 1 & k_{T} \\ 0 & C/A \\ -1 & anti-k_{T} \end{cases}$$

- LHC is a busy hadronic environment with multiple hard scales:
 √s ≫ M ≫ Λ_{QCD}. Essential elements of boosted analyses include:
- variables to discriminate between QCD shower and collimated hard decays
 - Specialize to specific search and backgrounds
 - a few examples, defined for a splitting
 j → j₁, j₂:
 - Energy sharing: Z = min(E₁, E₂)/E
 Thaler, Wang '08
 - Mass drop: $\max(m_1, m_2) < \mu m_j$

- LHC is a busy hadronic environment with multiple hard scales: $\sqrt{s} \gg M \gg \Lambda_{QCD}$. Essential elements of boosted analyses include:
- algorithm to reduce contamination from unrelated soft radiation
 - contribution scales like ΔR²: especially important for large jets
 - filtering Butterworth, Davison, Rubin, Salam '08
 - pruning Ellis, Vermilion, Walsh '09
 - trimming Krohn, Thaler, Wang '09
- Thoughtful use of jet algorithms changes S, B.

- Jet substructure can rescue the utility of hadronic Higgs decay modes Butterworth, Davison, Rubin, Salam '08
- In the standard model: $pp \rightarrow V + (h \rightarrow b\bar{b})$
 - 1 leptonic decays of V: allow initial event identification and selection
 - 2 Go to boosted regime: improve S/B
 - 3 Look for substructure to differentiate collimated H decays from QCD radiation
 - Groom jets: minimize contribution from unrelated soft radiation to improve mass resolution
 - 5 Utilize b-tags to further suppress QCD background

- 2 Go to boosted regime: improve S/B
 - Different scaling of signal and background in boosted regime:
 - signal: $m_{b\bar{b}}$ fixed, $\Delta R_{b\bar{b}} \sim m_{b\bar{b}}/p_{Tb\bar{b}}$
 - background: for a given ΔR_{ij} , $m_{ij} \propto p_{Tij} \Delta R_{ij}$
 - large p_T : signal has large $m_{b\bar{b}}$ and small $\Delta R_{b\bar{b}}$ background, large $m_{b\bar{b}}$ and large $\Delta R_{b\bar{b}}$
 - in boosted regime, h collected in single fat jet (R ≈ 1-1.5)
 - · Cluster events initially on large angular scales

- S Look for substructure to differentiate collimated H decays from QCD radiation
- Resolve fat jet on finer angular scales looking for a hard splitting characteristic of a boosted hard decay:
 - Can choose R_{eff} event by event using a sequential declustering procedure Butterworth, Davison, Rubin, Salam '08: determine R_{eff} from the first sufficiently interesting splitting in the sequence
 - For each splitting, $j \rightarrow j_1, j_2$,
 - if the splitting has a large mass drop, $max(m_1, m_2) < \mu m_j$,
 - and is symmetric, $y \equiv \frac{\min(p_{T1}^2, p_{T2}^2)}{m_1^2} \Delta R_{12}^2 > y_{cut}$,
 - stop: have found a Higgs candidate at R_{eff} = ΔR₁₂. Else, keep unclustering the more massive jet.
 - We will use a fixed angular scale for subjets.
 - We will still look for a light scale and a symmetric decay

- 4 Groom jets: minimize contribution from unrelated soft radiation to improve mass resolution
 - Soft contamination distorts jet properties and in particular invariant mass; success of analysis relies on being able to reconstruct signal mass peak well
 - We will use trimming Krohn, Thaler, Wang '09 to clean up our jets
- 6 Utilize b-tags to further suppress QCD background
 - Even after these jet gymnastics QCD backgrounds are still huge.
 - Requiring 2 b-tags reduces SM background by more than an order of magnitude.

Boosted BSM $h \rightarrow 4g$

- $h \rightarrow aa \rightarrow 4g$ looks like $h \rightarrow j_a j_a$ at LHC energies: do not resolve $a \rightarrow gg$ splitting
- This is a similar topology to SM. But no b tags. Are we dead?
- "a-tagging": a boosted a does not look like a generic QCD jet
 - new jet variables to distinguish j_a from QCD radiation
 - less radiation

presence of small mass scale m_a ≪ p_{Ta}

Boosted BSM $h \rightarrow 4g$

- For non-SM Higgs, tth production channel becomes relatively more useful:
 - SM: in addition to large tt̄ + jj background, severe combinatoric background: tt̄ → bb̄WW

total signal efficiency and purity for different approaches to the combinatorics (ATLAS TDR)

- non-SM: with leptonic tops, can cleanly separate top and Higgs decay products
- have additional independent production channel available

- As in SM, start with jet clustered on large scale to select initial Higgs candidate
- resolve on finer angular scales to distinguish properties
- look for evidence of hard splitting to 2 particles with identical mass:
 - require 2 subjets with p_{Ti} > f_i p_{T,tot}
 - "mass democracy": $\alpha \equiv \min\left[\frac{m_{j1}}{m_{j2}},\frac{m_{j2}}{m_{j1}}\right] > \frac{\alpha_{\it cut}}{}$

• signal and background distributions of α in $t\bar{t}+h$ after requiring $p_T>$ 125 GeV

- Only final stage of signal cascade decay involves colour sources: low mass and small angle
- • expect minimal radiation between subjets see also: Galliccio, Schwartz, '10
- colour flow: $\beta = \frac{\rho_{T/3}}{\rho_{T/3}} < \beta_{cut}$
 - definition with single jet: reduce sensitivity to pileup
- sensitivity depends on p_T threshold for soft jets

• signal and background distributions of β in $t\bar{t}+h$ after requiring $p_T>$ 125 GeV; $p_{T,soft}>$ 1 GeV

- Select moderately or highly boosted Higgs to control backgrounds (physics or combinatorics)
- ⇒ QCD jets passing cuts have likewise hard p_T spectrum
- QCD: $\langle m^2 \rangle = \frac{\alpha_s C_F}{\pi} p_T^2 R^2 + \dots$
- require $(m_{j1} + m_{j2})/2 < m_{cut}$

- Some further possibilities:
 - Track counting: low-scale gluon-initiated jets are comparatively track-sparse, and track counting may be an efficient discriminant
 - Resolving a → gg: If it is possible to resolve perturbative splitting a → gg, this additional substructure variable can help distinguish between the collimated a and the more hierarchical background Chen, Nojiri, Sreethawong '10
- While promising, will not include in results

Results

A few notes about event generation:

- Signal and background processes are generated with MadGraph/MadEvent for tth and in Pythia for W + h and showered with Pythia (k_T-ordered); clustering is done using FastJet with some additional clustering done in Mathematica
- Include pile-up and underlying event
- For $t\bar{t}h$: main backgrounds V+j, $t\bar{t}+jj$ are matched using MadGraph's native k_T -MLM procedure
- Results robust under changing model of parton shower (Pythia Q²-ordered) and choice of matching scheme (shower-k_T)
- Also consider subdominant backgrounds (for tth: ttZ, Z + jj)

Results: tth

A few notes about event generation:

- 3 signal samples: $m_h = 80 \text{ GeV}$, 100 GeV, 120 GeV,
 - m_a = 8 GeV
- develop two sets of cuts, for $m_h = 120 \text{ GeV}$ and $m_h \leq 100 \text{ GeV}$
- Assume SM production cross sections and 100% BR to 4g final state

Cut flow for $t\bar{t} + h$: preselection

	σ_{sig} (fb)	σ_{bkgd} (fb)	S/B	S/\sqrt{B} at 100 fb ⁻¹
preselection	8.1	6700	1.2×10^{-3}	1.0

- Select for top decay products: 2 b, 2 ℓ , MET; leptonic Z-window veto; jets found with anti- k_T , R = 0.4
- Model b tagging efficiency with simple 0.6 flat tagging rate
- cluster jets with p_T > 10 GeV with R = 1.5;
- trim fat jets: drop R = 0.4 subjets with $p_T < 0.15 p_{T,tot}$
- Higgs candidate is the hardest fat jet in the event.

Cut flow for $t\bar{t} + h$: kinematics and substructure

	σ_{sig} (fb)	$\sigma_{bkgd}(fb)$	S/B
preselection	8.1	6700	1.2×10^{-3}
kinematics	1.7	220	7.8×10^{-3}
mass democracy	0.96	76	1.2×10^{-2}

- look at hard fat jets: p_T > 125 GeV,
- which contain hard subjets: $j \supset j_1, j_2$ with $p_T > 40$ GeV
- mass democracy cut on hardest subjets: $\alpha(j_1, j_2) > 0.70$

Cut flow for $t\bar{t} + h$: colour cuts

	σ_{sig} (fb)	$\sigma_{bkgd}(fb)$	S/B
subjet kinematics	0.96	76	1.2×10^{-2}
β < 0.03	0.43	17	2.6×10^{-2}

- Colour flow: consider set of R = 0.4 subjets within R = 1.5 of jet centroid
 - consider two different thresholds for soft jets: 5 GeV and 1 GeV
 - best results (shown here): p_T thresholds at 1 GeV
 - good results for β cut at p_T > 5 GeV
- require $\beta(j_3) < 0.03$

Cut flow for tth: mass window cuts

	σ_{sig} (fb)	σ_{bkgd} (fb)	S/B	S/\sqrt{B} (100 fb ⁻¹)
colour flow	0.43	17	2.6×10^{-2}	1.1
subjet mass	0.28	1.9	0.14	2.0
Higgs window	0.28	0.21	1.3	6.1

- jet mass: require $|m_i m_h| < 10 \text{ GeV}$
- subjet mass: require $(m_1 + m_2)/2 < 10 \text{ GeV}$

Background in blue, signal plus background in orange

Results: W + h

- Similar cuts for W + h channel: parameters adjusted for different kinematics of final state
- Preselection: cluster event on large scale, R = 1.0 for $m_h = 100$ GeV, and ask for
 - a hard jet: p_T > 200 GeV
 - a lepton from the W
- Resolve subjets on the finer scale R = 0.3.
- Impose subjet cuts on the 2 hardest subjets:
 - mass democracy α < 0.7
 - colour flow $\beta < 0.005$
 - subjet mass cut m

 < 10 GeV
 - For mass cuts, trim subjets using f = 0.03

Results: W + h

	$\sigma_{\it sig}$ (fb)	σ_{bg} (fb)	S/B	S/\sqrt{B}
$p_T(j) > 200 \text{ GeV}$	16	30000	5.2×10^{-3}	0.9
subjet mass	12	19000	6.2×10^{-3}	0.9
Higgs window	7.1	400	1.8×10^{-2}	3.6
$\alpha > 0.7$	4.1	140	$3.0 imes 10^{-2}$	3.5
β < 0.005, $\rho_T^{\text{min}} = 1 \text{ GeV}$	0.67	0.74	0.90	7.8
β < 0.005, $p_T^{\text{min}} = 5 \text{ GeV}$	2.9	2.6	0.11	5.7

results are again for 100 fb $^{-1}$

Combining channels

Reconstructed h mass in the W+ jets (left) and $t\bar{t}+$ jets channels (right). Error bars show statistical errors.

Combining channels

Results for Higgses above and below 114 GeV in both channels:

		$m_h = 80 \text{ GeV}$	$m_h = 100 \text{ GeV}$	$m_h = 120 \text{ GeV}$
W+h	S/\sqrt{B}	6.6 (4.8)	7.8 (5.7)	7.0 (6.9)
	S/B	0.34 (0.067)	0.90 (0.11)	0.80 (0.24)
$\overline{t} + h$	S/\sqrt{B}	6.1 (5.9)	6.1 (5.7)	7.1 (7.1)
	S/B	1.1 (0.97)	1.3 (1.1)	2.5 (2.5)

- Numbers outside (inside) parentheses are for soft radiation thresholds 1 (5) GeV
- Without colour flow cut: 3σ
- Cuts are optimized for m_h ≤ 100 GeV and m_h = 120 GeV separately.

Conclusions

- A light Higgs, even if not below LEP limit, can easily decay to a complicated multi-particle final state which can be challenging at the LHC.
- A light Higgs with dominant non-Standard Model decay mode
 h → 4g can be discovered at the LHC
- Two useful production channels: V + h and $t\bar{t} + h$
 - tth relatively more useful for BSM Higgses than SM Higgses: combinatoric background ameliorated
- Colour flow observables have promise to extend LHC BSM sensitivity, both in other Higgs searches and beyond